Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 92(21): 14822-14829, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33059439

RESUMO

The influence of the polymer solubility on the separation efficiency in thermal field-flow fractionation (ThFFF) was investigated for a polymer model system of differently branched chain walking polyethylenes in five different solvents, which were selected depending on their physical parameters. The understanding of polymer thermal diffusion has been elucidated using a revisited approach based on the latest thermal diffusion prediction model by Mes, Kok, and Tijssen combined with the Hansen solubility theory. Thereby, a significant improvement in the precision of the thermal diffusion prediction and the separation efficiency has been achieved by implementation of the temperature dependency on Hansen solubility parameters. In addition, we demonstrate a method for validation of the segmental size of polymer chains with varying topology by using the revisited thermal diffusion prediction approach in inverse mode and experimental thermal diffusion data.

2.
J Am Chem Soc ; 141(39): 15586-15596, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31438682

RESUMO

Recently developed chain walking (CW) catalysis is an elegant approach to produce materials with controllable structure and properties. However, there is still a lack in understanding of how the reaction mechanism influences the macromolecular structures. In this study, a series of dendritic polyethylenes (PE) synthesized by Pd-α-diimine-complex through CW catalysis (CWPE) is investigated by means of theory and experiment. Thereby, the exceptional ability of in situ tailoring polymer structure by varying synthesis parameters was exploited to tune the branching architecture, which allowed us to establish a precise relationship between synthesis, structure, and solution properties. The systematically produced polymers were characterized by state-of-the-art multidetector separation and neutron scattering experiments as well as atomic force microscopy to access molecular properties of CWPE. On a global scale, the CWPE appear in a worm-like conformation independently on the synthesis conditions. However, severe differences in their contraction factors suggested that CWPE differ substantially in topology. These observations were verified by NMR studies that showed that CWPE possess a constant total number of branches but varying branching distribution. Small angle neutron scattering experiments gave access to structural characteristics from global to segmental scale and revealed the unique heterogeneity of CWPE, which is predominantly based on differences in their dendritic side chains. The experimental data were compared to theoretical CW structures modeled with different reaction-to-walking probabilities. Simple theoretical arguments predict a crossover from dendritic to linear topologies yielding a structural range from purely linear to dendritic chain growth. Yet, comparison of theoretical and empirical scattering curves gave the first evidence that a transition state to worm-like topologies is actually experimentally accessible. This crossover regime is characterized by linear global features and dendritic local substructures contrary to randomly hyperbranched systems. Instead, the obtained CWPE systems have characteristics of disordered dendritic bottle brushes and can be adjusted by the walking rate/reaction probability of the catalyst.

3.
Anal Chem ; 90(10): 6178-6186, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29706076

RESUMO

Modifying material properties in simple macromolecules such as polyethylene (PE) is achieved by different connection modes of ethylene monomers resulting in a plurality of possible topologies-from highly linear to dendritic species. However, the challenge still lies within the experimental identification of the topology and conformation of the isolated macromolecules because of their low solubility, which demands methods with specific solvents and high operating temperatures. Additionally, a separation technique has to be coupled to different detection methods to meet the specific demands of the respective characterization goal. In this work, we report a quadruple-detector high temperature size exclusion chromatography (HT-SEC) system which contains online multiangle laser light scattering, dynamic light scattering, differential viscometry, and differential refractometry detectors. Quadruple-detector HT-SEC was successfully applied to explore the full range of physical parameters of various PE samples with different branching topologies ranging from highly linear macromolecules, polymers with moderate level of branching, to highly branched PEs with hyperbranched structure. This method is a useful tool not only to investigate molecular weight, mass distribution, and size but also to enable access to important factors which describe the conformation in dilute solution and branching density.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...